Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(10): 111752, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476854

RESUMO

Temperate phages dynamically switch between lysis and lysogeny in their full life cycle. Some Bacillus-infecting phages utilize a quorum-sensing-like intercellular communication system, the "arbitrium," to mediate lysis-lysogeny decisions. However, whether additional factors participate in the arbitrium signaling pathway remains largely elusive. Here, we find that the arbitrium signal induces the expression of a functionally conserved operon downstream of the arbitrium module in SPbeta-like phages. SPbeta yopM and yopR (as well as phi3T phi3T_93 and phi3T_97) in the operon play roles in suppressing phage lytic propagation and promoting lysogeny, respectively. We further focus on phi3T_93 and demonstrate that it directly binds antitoxin MazE in the host MazF/MazE toxin-antitoxin (TA) module and facilitates the activation of MazF's toxicity, which is required for phage suppression. These findings show events regulated by the arbitrium system and shed light on how the interplay between phages and the host TA module affects phage-host co-survival.


Assuntos
Antitoxinas , Bacteriófagos
2.
Nat Microbiol ; 7(9): 1480-1489, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35982312

RESUMO

First discovered in the 1980s, retrons are bacterial genetic elements consisting of a reverse transcriptase and a non-coding RNA (ncRNA). Retrons mediate antiphage defence in bacteria but their structure and defence mechanisms are unknown. Here, we investigate the Escherichia coli Ec86 retron and use cryo-electron microscopy to determine the structures of the Ec86 (3.1 Å) and cognate effector-bound Ec86 (2.5 Å) complexes. The Ec86 reverse transcriptase exhibits a characteristic right-hand-like fold consisting of finger, palm and thumb subdomains. Ec86 reverse transcriptase reverse-transcribes part of the ncRNA into satellite, multicopy single-stranded DNA (msDNA, a DNA-RNA hybrid) that we show wraps around the reverse transcriptase electropositive surface. In msDNA, both inverted repeats are present and the 3' sides of the DNA/RNA chains are close to the reverse transcriptase active site. The Ec86 effector adopts a two-lobe fold and directly binds reverse transcriptase and msDNA. These findings offer insights into the structure-function relationship of the retron-effector unit and provide a structural basis for the optimization of retron-based genome editing systems.


Assuntos
Escherichia coli , DNA Polimerase Dirigida por RNA , Sequência de Aminoácidos , Sequência de Bases , Microscopia Crioeletrônica , DNA , DNA Bacteriano , Conformação de Ácido Nucleico
3.
Cell Discov ; 5: 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149347

RESUMO

A newly identified arbitrium communication system regulates the lysis-to-lysogeny decision in a Bacillus bacteriophage. This system contains an arbitrium hexapeptide as a signal, the cellular receptor AimR, and the lysogenic negative regulator AimX. AimR specifically targets the downstream DNA to activate aimX gene expression. The arbitrium peptide binds to AimR, inhibiting its DNA-binding to promote phage lysogeny. Recently, we and other groups have elucidated how arbitrium peptide sensed by AimR. However, the molecular mechanisms of DNA recognition by AimR and the regulation of its DNA-binding activity by the peptide remain largely unknown. Here, we report the crystal structure of the AimR-DNA complex at 2.1 Å resolution. The N-terminal HTH motif recognizes the palindromic DNA sequence, buttressed by interactions between positively charged residues and the DNA phosphate groups. The DNA-bound AimR assembles a more closed dimer than the peptide-bound form. Single-molecule FRET and crosslinking assays revealed that the AimR protein samples both open and closed conformations in solution. Arbitrium peptide binding induces a closed-to-open conformational change of AimR, eliminating DNA targeting. Our structural and functional analysis provides new insights into the DNA recognition mechanism of AimR and its regulation by the arbitrium peptide in the context of phage lysis-lysogeny decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...